

Law
re

nce

Liver
m

ore

Nati
onal

Lab
ora

to
ry

UCRL-ID-123220

UniTree Name Server Internals

D. Mecozzi
J. Minton

January 1996

This is an informal report intended primarily for internal or limited external
distribution. The opinions and conclusions stated are those of the author and may
or may not be those of the Laboratory.
Work performed under the auspices of the U.S. Department of Energy by the
Lawrence Livermore National Laboratory under Contract W-7405-ENG-48.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither
the United States Government nor the University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or the University of California. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government or the University of California, and shall not be
used for advertising or product endorsement purposes.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information

P.O. Box 62, Oak Ridge, TN 37831
Prices available from (615) 576-8401, FTS 626-8401

Available to the public from the
National Technical Information Service

U.S. Department of Commerce
5285 Port Royal Rd.,

Springfield, VA 22161

- 1 -

UniTree Name Server Internals*

Donna Mecozzi and Jim Minton
Lawrence Livermore National Laboratory

Livermore, California

INTRODUCTION

The UniTree Name Server (UNS) is one of several servers which make up the UniTree
storage system. The Name Server is responsible for mapping names to capabilities.
Names are generally human readable ASCII strings of any length. Capabilities are unique
256-bit identifiers that point to files, directories, or symbolic links. The Name Server
implements a UNIX style hierarchical directory structure to facilitate name-to-capability
mapping. The principal task of the Name Server is to manage the directories which make
up the UniTree directory structure.

The principle clients of the Name Server are the FTP Daemon, NFS and a few UniTree
utility routines. However, the Name Server is a generalized server and will accept
messages from any client.

The purpose of this paper is to describe the internal workings of the UniTree Name Server.
In cases where it seems appropriate, the motivation for a particular choice of algorithm as
well as a description of the algorithm itself will be given.

1.0 Directories
Each UniTree directory contains state information and an arbitrary number of entries . An
entry is a name-capability pair. An example of a piece of state information is the directory
owners UID. The Name Server implements directories by chaining together one or more
(1024 byte) blocks from a file managed by Cachelib. (The Cachelib software layer is
shown in Figure 12 and is discussed in section 3.4.)

Figure 1 illustrates a directory composed of several Cachelib blocks chained together. The
first block in every directory is called a BlockHead. When the entry space in the
BlockHead becomes full, an EntryBlock is attached to the BlockHead. When the entry
space in an EntryBlock becomes full, another EntryBlock is attached to the last EntryBlock
in the directory's EntryBlock chain. Thus, a directory can grow to accommodate an
arbitrary number of entries. A directory may also have one or more NameBlocks, as
shown in Figure 1. NameBlocks hold "overflow" characters from long entry names and
very long symbolic link text. As with EntryBlocks, additional NameBlocks are attached to
the last NameBlock in the directory 's NameBlock chain when the required name space is
unavailable.

* This work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore
National Laboratory under contract No. W-7405-ENG-48.

- 2 -

Nam eBlockName Block

En tr y Block

Block Head

Entr y
Space

Entr y
Space

Entr y
Space

Ca ch eLib

BlockDe s

Ca ch elib

BlockDe s

Directo y
 He ad er

Cache Lib

BlockD e s

Ca ch eLib

BlockDe s

Ca ch eLib

BlockDe s

Name
Space

Name
Space

NSUsage NSUsage

En tr y Block

Figure 1. This drawing illustrates the composition of a UniTree directory. A directory
consists of one or more 1024 byte blocks. A directory always has one and only one
BlockHead. A directory has zero or more NameBlocks and zero or more Entry Blocks.

1.1 BlockHead

The BlockHead is the “top” level block in a directory and is composed of four
distinct structures:

• a Cachelib header (16 bytes of data)
• a BlockDescriptor (32 bytes of data)
• a DirectoryHeader (112 bytes of data)
• an EntrySpace (864 bytes)

Figure 2 shows an overview of a BlockHead.

- 3 -

BlockHead

CachelibHeader

BlockDescriptor

EntrySpace

DirectoryHeader

The EntrySpace is 864 bytes long and
can hold up to 18 entries. Each entry is
48 bytes in length and can be either a
DirectEntry or an IndirectEntry.

 16

112

 32

 864

Figure 2. The BlockHead Structure is a composite of four structures: a
CachelibHeader, a BlockDescriptor, a DirectoryHeader, and an EntrySpace.

In include file nsdir.h a BlockHead is defined as:

typedef struct
{

BlockDescriptorStruct BlockDes;
DirectoryHeaderStruct DirHeader;
DirectEntryStrct Entry[MAX_ENTRIES_IN_BLOCK_HEAD];

} BlockHeadStruct;

The CachelibHeader is actually part of the structure of the block obtained from the
Cachelib software, so its structure is not defined as part of the BlockHead structure.

- 4 -

1.1.1 Cachelib Header

A Cachelib header has three fields. The FreeList pointer is non zero if the block is
on the free (available) list. The Checksum will be non zero if Cachelib has been
instructed to checksum the blocks. The TimeStamp contains the time the block was
written. A Cachelib header is shown in Figure 3. A discussion of the Cachelib
software layer is given below in section 3.4.

Cachelib Header

Free List
Checksum

Time Stamp

4

 8

4

Figure 3. The Cachelib Header occupies four 32-bit words. The field widths in
this diagram are given in bytes.

In include file cache.h the CachelibHeader is defined as:

typedef struct ObjectHeaderStruct
{

unsigned FreeList;
unsigned Checksum;
int64 TimeStamp;

} ObjectHeaderStruct;

1.1.2 Block Descriptors

The BlockDescriptor contains data describing how the cachelib block is used by the
Name Server. Figure 4 shows the format of a BlockDescriptor. The Consistency
Word contains one of the following strings, "BkHd", "EnBk", "NmBk" or
"SmLk", depending on how the block is being used. The BlockHeadId,
NextBlockId and NameBlockId contain Cachelib identifiers. The bit fields (InUse
and Indirect) in the BlockDescriptor have a one-to-one mapping to each entry in the
EntrySpace. These fields indicate whether or not an entry is currently InUse and
whether an InUse entry is an IndirectEntry or not. (The value of a specific InUse
bit is 1 whenever the corresponding EntrySpace has an entry in it. The value of a
specific Indirect bit is 1 whenever the corresponding entry should be interpreted as
an IndirectEntry.) Depending on how the block is being used, one and only one of
the BlockHead, EntryBlock, NameBlock or SymbolicLink bits is set. The
TrashDirectory bit is set in the BlockHead of a “.trash” directory. (Trash
directories are discussed in section 2.0.) Finally, ThisBlockId contains the
Cachelib identifier of the block itself.

The ConsistencyWord of a BlockHead contains the string "BkHd". The
BlockHead bit will be set true (set to 1). The BlockHeadId and ThisBlockId will be

- 5 -

equal and set to the value of the Cachelib identifier of the block. A BlockHead only
holds 18 entries, so only the first 18 Indirect/InUse elements will be used by the
BlockHead.

1

2

3

4

5

6

7

8

Con sist en cy Wo r d

Block H ead Id

Next Block Id

Name Block Id

Un u se d

Th is Block Id

1 1 2 4 4 4 4 4 4 4

44444444

4 4 4 4

32

11

32

32

32

32

1 1 1 1 1

B
lockH

ead

E
ntryB

lock

N
am

eB
lock

Sym
bolic

L
ink

T
rash

D
irectory

U
nused

InU
se

Indirect

Figure 4. The BlockDescriptor occupies eight 32-bit words. The field widths in
this diagram are given in bits.

In include file nsdir.h a the BlockDescriptor is defined as:

typedef struct
{

ConsistencyString ConsistencyWord;
unsigned BlockHeadId;
unsigned NextBlockId;
unsigned NameBlockId;
unsigned EntrySpaceMap1;
unsigned EntrySpaceMap2;
unsigned EntrySpaceMap3 : 16;
unsigned BlockHead : 1;
unsigned EntryBlock : 1;
unsigned NameBlock : 1;
unsigned SymbolicLink : 1;
unsigned TrashDirectory : 1;
unsigned Unused1 : 11;
unsigned ThisBlockId;

} BlockDescriptorStruct;

- 6 -

1.1.3 Directory Header

The Directory Header contains information necessary to provide UNIX style access
to the directory. Figure 5 depicts a DirectoryHeader structure. The Directory
Header has a field for the UID and GID of the user that owns the directory. The
Version field is used to note significant changes in the Name Server's data base.
LinkCount contains a count of the number of directories that reference the directory.
The four time fields, TimeCreated, TimeLastAccessed, TimeLastModified, and
TimeHeaderUpdated are micro second time values that indicate when the directory
was created, last read, entry space was last modified, and when data in the
Directory Header last changed. The ProtectionLevel is advisory only and ranges in
value from 0 to 7. Permissions are the standard UNIX mode bits, read, write and
execute (rwx), with mode bits for the owner, group and others. The
ExpirationTime is used only for ".trash" directories (discussed in section 2.0).
NumBlocks is a count of the number of blocks comprising the directory. The
EncryptionKey is a unique value used to decrypt capabilities and verify that they
identify the directory.

- 7 -

Directory Header Struct

UID
GID

Version
Link Count

Time Created

Time Last Accessed

Time Last Modified

Time Header Updated

Protection Level
Permissions

Expiration Time
Num Blocks

Encryption Key

Unused

64

 32

320

 32

 32

 32

64

64

64

 32

 32

 32

 32

64

Figure 5. A Directory Header structure. The field widths in this diagram are given
in bits.

In include file nsdir.h a the Directory Header is defined as:

typedef struct
{

int UID;
int GID;
unsigned Version;
int LinkCount;
int64 TimeCreated;
int64 TimeLastAccessed;
int64 TimeLastModified;
int64 TimeHeaderLastModified;
unsigned ProtectionLevel;
unsigned Permissions;

- 8 -

int ExpirationTime;
unsigned NumBlocks;
int64 EncryptionKey;
unsigned Unused2[10];

} DirectoryHeaderStruct;

1.1.4 EntrySpace

The BlockHead has enough EntrySpace to hold 18 entries. When a new entry is to
be inserted into the directory, the Name Server examines the InUse bits to find the
first available unused entry in the EntrySpace. The appropriate InUse bit becomes
true (set to 1) when the entry is added to the EntrySpace. When an entry is deleted
the corresponding InUse bit becomes false and the entry space becomes available
for new entries. There are two types of entries: DirectEntries and IndirectEntries.

Direct Entries

DirectEntries are composed of a Name and Capability pair. Figure 6 depicts the
structure of a DirectEntry. The length of the name string that can be kept in a
DirectEntry is 16 characters or less. When a string is less than 16 characters
long, a NIL character is appended to the end of the string. That way, the length
of the entry name can easily be determined. An entry name of exactly 16
characters does not have a trailing NIL character.

 Direct Entry

 Name

Capability

16

32

Figure 6. The structure of a Direct Entry. The field widths in this diagram are
given in bytes.

In include file nsdir.h a the DirectEntry structure is defined as:

typedef struct
{

DirectNameString Name;
Capability ResourceId;

} DirectEntryStruct;

Indirect Entries

IndirectEntries are also composed of a Name and Capability pair, but since the
Name is greater than 16 characters part of it overflows into a NameBlock. The
first 8 characters of the name are kept in the IndirectEntry and the remaining
characters are kept in one or more NameBlocks. An IndirectEntry also contains

- 9 -

a "pointer" to locate the characters that are stored in a NameBlock. The
"pointer" contains two pieces of data: a NameBlockId and an Offset. The
NameBlockId is the Cachelib identifier of the NameBlock were the string
begins. The Offset is a zero origin index into the NameSpace and points to the
beginning of the overflow string.

 Indirect Entry

NameBlockId
NameBlockOffset

Name

4

 8

4

Capability
32

Figure 7. The structure of an IndirectEntry. The field widths in this diagram
are given in bytes.

In include file nsdir.h a the IndirectEntry structure is defined as:

typedef struct
{

unsigned NameBlockId;
unsigned NameBlockOffset;
PartialNameString Name;
Capability ResourceId;

} IndirectEntryStruct;

1.2 Name Blocks

NameBlocks are used to hold “overflow” characters from entry names that exceed
16 characters and symbolic link text that exceeds 864 characters. A NameBlock is
composed of the following fields:

• a Cachelib header (16 bytes of data)
• a BlockDescriptor (32 bytes of data)
• a HoleSize (4 bytes of data)
• a NameSpaceUsage bits (32 bytes of data)
• Name Space (940 bytes)

Figure 8 shows an overview of a NameBlock.

The ConsistencyWord in the BlockDescriptor of a NameBlock will be "NmBk". In
addition, the NameBlock bit in the BlockDescriptor will be true (set to 1). The
Indirect/InUse elements of the BlockDescriptor are not used by a NameBlock and
should all be set to 0. The value of the BlockHeadId in the BlockDescriptor will be
that of the BlockHead that the NameBlock in associated with.

- 10 -

1.2.1 HoleSize

The HoleSize contains the character length of the largest string that can be placed in
the NameBlock. This value is computed each time the name space is altered by the
addition or deletion of characters. (The NameSpaceUsage bits are used to compute
the HoleSize.) The HoleSize facilitates finding a NameBlock that can accommodate
a string.

1.2.2 NameSpaceUsage bits

NameSpaceUsage is an array of bits each of which correspond to a (32-bit) word in
the NameSpace. Whenever characters are put into a word of the NameSpace, the
corresponding NameSpaceUsage bit is turned on (set to 1). For example, if
characters are put into words 193 and 194 of the NameSpace area, bits 193 and 194
in the NameSpaceUsage bit array are turned on. Similarly, when characters are
removed from the NameSpace, the corresponding NameSpaceUsage bits are turned
off (set to 0).

1.2.3 Name Space

The NameSpace is 235 (32-bit) words of data. The NameSpace is allocated in units
of words. The strings stored in the NameSpace are of variable length and are
terminated with a NIL character. That way, each string stored in the NameSpace
can be easily identified.

When the Name Server is trying to locate a NameBlock in which to store an
"overflow" string, it checks the HoleSize of attached NameBlocks. If the HoleSize
of a NameBlock is large enough to hold the string plus the trailing NIL character,
then the NameSpaceUsage bits of that NameBlock are examined to locate the hole
in the NameBlock. If there is no hole large enough to hold the string, or there are
no NameBlocks associated with the directory, then a NameBlock is obtained and
linked onto the NameBlock chain.

- 11 -

NameBlock

Cachelib Header

Block Descriptor

Name Space

Hole Size

The Name Space is 235 (32-bit) words
long. The Name Space is allocated in
units of words. Strings stored in the
Name Space are of variable length and
are NIL terminated.

16

32

32

940

4

Name Space Usage
Each bit in the NameSpaceUsage maps
to one of the 235 (32-bit) words below.
The value of the bit is 1 when the word
is in use.

Figure 8. NameBlocks hold “overflow” characters from strings that are too long to
fit into other blocks. Field widths are given in bytes.

In include file nsdir.h a NameBlock is defined as:

typedef struct
{

BlockDescriptorStruct BlockDes;
unsigned HoleSize;
unsigned NameSpaceUsage[NAME_SPACE_USAGE_LENGTH];
char Name[NAME_SPACE_CHAR_LENGTH];

} BlockHeadStruct;

The CachelibHeader is actually part of the structure of the block obtained from the
cachelib software, so its structure is not defined as part of the NameBlock structure.

- 12 -

1.2.4 Storing Long Names

A first-fit algorithm is used to find a place for overflow characters. If there are no
NameBlocks attached to the directory, one is obtained and linked to the BlockHead.
If one or more NameBlocks are attached to the directory, each NameBlock in the
chain is examined, in the order they are linked, for a hole large enough to hold the
characters. The hole must be large enough to hold the characters plus a trailing NIL
character. If a hole large enough is found, the characters are copied into the hole,
the NameBlock is marked "dirty" and all of the blocks associated with this update
(transaction) are written to the database.

If a large enough hole cannot be found in any of the NameBlocks a new
NameBlock is obtained. It is linked to the last NameBlock in the chain, and the
characters are put into this new NameBlock. If a string contains more characters
than will fit in a single empty NameBlock, as many NameBlocks as needed are
obtained and linked to the directory, until all of the characters have been put into
NameBlocks. Whenever the last character of a NameBlock is non-NIL, the
NameBlock is being used to hold a string that is greater-than or equal-to 864
characters in length.

There is an interesting end-case to note. Suppose a string that is a multiple of 864
characters is being stored into a NameBlock. Such a string will exactly fill a
(multiple of) NameBlock(s). But there must be space for the trailing NIL
character. The NIL character will be placed into the first character position of the
last (newly obtained) NameBlock.

1.3 EntryBlocks

EntryBlocks are used to hold entries that exceed the 18 entries that can be kept in a
BlockHead. The first EntryBlock that is attached to a BlockHead will be "pointed
at " by the NextBlockId field in the BlockHead's BlockDescriptor. As additional
EntryBlocks are added to the directory, they are serially linked through the
NextBlockId field in the BlockDescriptor.

An EntryBlock is composed of the following fields:

• a Cachelib header (16 bytes of data)
• a BlockDescriptor (32 bytes of data)
• Entry Space (960 bytes)

Figure 9 shows an overview of an EntryBlock.

The ConsistencyWord in the BlockDescriptor of an EntryBlock will be "EnBk". In
addition, the EntryBlock bit in the BlockDescriptor will be true (set to 1). An
EntryBlock can hold up to 20 entries so all of the Indirect/InUse elements are used
by an EntryBlock. The value of the BlockHeadId in the BlockDescriptor will be the
Id of the BlockHead that the EntryBlock is associated with.

Like the BlockHead's EntrySpace, an EntryBlock's EntrySpace is used to store
Direct and Indirect entries. Entry types are discussed in section 1.1.4.

- 13 -

EntryBlock

Cachelib Header

Block Descriptor

Entry Space

Unused Space

The Entry Space is 960 bytes
long and can hold up to 20
entries. Each entry is 48 bytes in
length and can be either a
DirectEntry or an IndirectEntry.

16

16

32

960

Figure 9. An overview of an EntryBlock. The field widths in this diagram are
given in units of bytes.

In include file nsdir.h a an EntryBlock is defined as:

typedef struct
{

BlockDescriptorStruct BlockDes;
unsigned Unused[4];
DirectEntryStruct Entry[MAX_ENTRIES_IN_ENTRY_BLOCK];

} BlockHeadStruct;

The CachelibHeader is actually part of the structure of the block obtained from the
cachelib software, so its structure is not defined as part of the EntryBlock structure.

- 14 -

1.4 Symbolic Link Blocks

The SymbolicLinkBlock is the “top” level block in a symbolic link and is composed
of four distinct structures:

• a Cachelib header (16 bytes of data)
• a BlockDescriptor (32 bytes of data)
• a DirectoryHeader (112 bytes of data)
• NameSpace (864 bytes)

Figure 10 shows an overview of a SymbolicLink.

The ConsistencyWord of the BlockDescriptor in a SymbolicLink contains the
string, "SmLk". The SymbolicLink bit in the BlockDescriptor will be true (set to
1). The BlockHeadId field and the ThisBlockId field will be equal and contain the
value of the Cachelib identifier of the block. NameBlocks are the only other type of
block that will be chained to a SymbolicLink, and they will be chained through the
NameBlockId field. The Indirect/InUse elements are not used by a SymbolicLink
and should all be set to 0.

The information kept in the DirectoryHeader structure of a SymbolicLink is
identical to that kept for a directory. In addition, there are no semantic differences
in the way the DirectoryHeader information is interpreted by the Name Server for a
SymbolicLink or a directory. The DirectoryHeader is discussed in section 1.1.3.

The NameSpace of a SymbolicLink can hold up to 864 characters. When the data
to be kept exceeds 864 characters, one or more NameBlocks is attached to the
SymbolicLink through the NameBlockId fields. No distinction is made between
the way overflow entry names and overflow SymbolicLink data are stored in
NameBlocks. NameBlocks were discussed in section 1.2.

- 15 -

SymbolicLink

Cachelib Header

Block Descriptor

Name Space

Directory Header

The Name Space can hold up to
864 characters of symbolic link
data. If more space is needed,
Name Blocks may be linked
through the BlockDescriptor.

16

112

32

864

The SymbolicLink bit is set whenever
a block is used as a symbolic link.

Figure 10. An overview of a Symbolic Link block. The field widths in this
diagram are given in units of bytes.

In include file nsdir.h a NameBlock is defined as:

typedef struct
{

BlockDescriptorStruct BlockDes;
DirectoryHeaderStruct DirHdr;
SymbolicLinkName Name;

} SymbolicLinkStruct;

The CachelibHeader is actually part of the structure of the block obtained from the
cachelib software, so its structure is not defined as part of the SymbolicLink
structure.

- 16 -

2.0 Shiva
The Name Server is a multi-threaded process that manages the UniTree directory structure.
Most of the Name Server threads are dedicated to servicing requests made by clients.
However, one of the Name Server threads, called Shiva, after the Hindu goddess of
destruction, is dedicated to removing expired objects from ".trash" directories.

2.1 Trash Directories

A ".trash" directory is created in each user's UniTree home directory when the user
is added to the UniTree system. The purpose of the ".trash" directory is to provide
a temporary holding place from which a user might recover files that have been
inadvertently deleted. When a user deletes a file, it is moved to the ".trash"
directory. Any file that has been in the ".trash" directory longer than the expiration
time is eligible for complete destruction by Shiva.

2.2 Expiration Time

The Name Server permits each ".trash" directory to have an expiration time
associated with it. This expiration time can be set when the directory is created, or
may be changed at a later time. In addition, the Name Server has a site configurable
default expiration time that is used for ".trash" directories that do not have a
specific expiration time. The global default expiration time can be queried and
modified with system administrator commands. At any time, a ".trash" directory
with a specific expiration time can be changed to use the global default expiration
time. (To change or query the expiration time of a specific directory or the Name
Server's default expiration time, commands in the utility, Bonnie, may be used.)

2.3 Deleting Expired Entries

Shiva awakens periodically to rumble through each ".trash" directory in the
UniTree system. The amount of time that Shiva suspends between the trash
rummaging and the maximum number of files to remove at a time are site
configurable. (A command in Bonnie may also be used to change the suspend
time and the maximum number of entries to delete at a time.)

Shiva maintains an internal table that maps a UID to a ".trash" directory. When
Shiva awakens, she begins with the first entry in this table. Shiva gets a list of the
first n entries in the ".trash" directory. The entry names are encoded with the time
and date they were moved into the ".trash" directory. That time is subtracted from
the current time and if that value is greater than the expiration time, the entry is
deleted from the ".trash" directory. If not, the entry is left in the trash, and Shiva
moves on to the next entry in the list. Shiva advances to the next entry in the UID
to ".trash" table when all n entries have been examined. If a ".trash" directory has
more than n entries, several passes through Shiva may be required before all of the
files are removed. After Shiva has rumbled through every entry in the UID to
".trash" table, her insatiable appetite will be somewhat abated, and she will once
again go to sleep.

- 17 -

2.4 UID to Trash Directory Mapping

To quickly locate a user’s ".trash" directory the Name Server builds and maintains a
table called the TrashHash table that maps UIDs to trash can Ids. Trash can Ids are
the Cachelib block identifier of the ".trash" directory's BlockHead. In addition to
the use described above in section 2.3, the TrashHash table is used by the Name
Server whenever a directory entry containing a file capability is deleted and is to be
moved into a ".trash" directory.

The TrashHash table is constructed each time the Name Server is initialized. The
Name Server builds the table from information found in the password file. Each
entry in the password file contains a user’s UID and a path name to the user’s home
directory. Since ".trash" directories reside in the user's home directory, the trash
can Id of each user's ".trash" directory can be found and entered into the
TrashHash table.

A simple hash is performed on the UID and the resulting value serves as an index
into the TrashHash table's array of pointers. Each pointer is the beginning of a
linked list of data structures which map UIDs to trash can Ids. Figure 11 illustrates
the structure of the TrashHash table.

UID

Trash Id
Next

UID

Trash Id
Next

UID

Trash Id
Next

Pointers

Figure 11. The TrashHash table which maps UIDs to trash can Ids.

In include file nsdir.h a the TrashHash table is defined as:

typedef struct TrashHashTable
{

Semaphore Sem;
TrashHashElement *THE[NUM_LISTS_IN_TRASH_HASH];

} TrashHashTable;

- 18 -

and the elements in the array of lists are defined as:

typedef struct TrashHashElement
{

struct TrashHashElement *Next;
int UID;
unsigned TID;

} TrashHashElement;

2.5 Names of Items in Trash Directories

Whenever Entries are put into a ".trash" directory they are given a name that
encodes the time they were put into the ".trash" directory to make them unique, yet
still easily identifiable. The ".trash" entry name is constructed by appending the
Date, Time, and a “uniquifier” to the original name. The format of a trash can name
is:

<OriginalName>#<Date>#<Time>#<Uniquifier>

where

Date is in the format mm-dd-yy
Time is in the format hh:mm:ss
Uniquifier is a monotonically increasing 4 digit number.

So, if on November 2, 1993 at 3:46 PM a user deletes a file entry that was named

ThisReallyCoolFile

and the Uniquifier value is currently 1233, the ".trash" directory entry for this file
would be named

ThisReallyCoolFile#11-02-93#15:46:00#1234

3.0 Software levels
The Name Server software can be divided into seven distinct layers. Figure 12 depicts
these layers. Notice that each of these layers depend on the SMILE tasking layer.

- 19 -

RPC

LibUnix In te rface

Name Serv er In te rface

Block Man ipu la tio n

Cach elib

Block I/ O

SM
ILE

Figure 12. The seven software layers that comprise the UniTree Name Server and
the SMILE tasking layer.

3.1 RPC Layer

The RPC layer is composed of the procedures that implement the Remote Procedure
Call interface. These routines provide the communication mechanism through
which the Name Server communicates with client processes. In addition, the RPC
layer implements the “thread” package which allows the Name Server to run as a
multi-threaded process.

The user level routines in the RPC layer are divided into two distinct categories: the
client routines and the (Name) server routines. The client routines are found in a
library called “libunix.a”. For a complete discussion of the client routines refer the
libunix.a documentation. The server routines are “called” by the server side of the
RPC layer. The routines called by the server side of the RPC layer compose the
LibUnix software layer shown in Figure 12.

3.2 LibUnix Layer

The name “LibUnix” is a remnant of by-gone times and even in those times was a
poorly chosen name. However, as with most historical mistakes, it is hard to get

- 20 -

rid of and therefore remains. The so-called LibUnix routines in the Name Server
are all confined to a single file named “LFuncs.c”. The name “LFuncs” was chosen
because all of the LibUnix routines begin with the letter 'l' and all of the routines
are value returning functions. The routines in this layer are called by the RPC
layer.

Each routine in the LibUnix layer in the Name Server has a “mirror-image” routine
in the client library libunix.a. Figure 13 shows an example in which a client
process is attempting to insert a file capability into a directory.

Name Server

linsert (DirCap, CapToInsert, Name, AccountCap, UID, GID);

linsert (DirCap, CapToInsert, Name, AccountCap, UID, GID);

Client

Name
Server

Li
bU

ni
x

L
ibU

nix

RPC

Figure 13. Notice that an linsert procedure exists in both the client LibUnix
layer and in the server LibUnix layer.

Although Account capabilities are passed to all of the LibUnix routines, they are, in
almost all cases, ignored. They are passed into the LibUnix layer, but are not
passed to any of the lower software layers. Account capabilities were used in the
original versions of LibUnix and are included in the present version to preserve the
function signatures. There is, however, one somewhat ugly instance in which
Account capabilities are used. At LLNL there is a need, when making a directory,
to pass a protection level from the FTP Daemon to the Name Server. Because there
are no provisions for a protection level in the lmakedir procedure, the protection
level is passed by putting it into the protection level field of the Account capability.
The Name Server lmakedir function extracts the protection level from the
Account capability and passes it through to the routine in the Name Server Interface
layer. We aren’t proud of this, but we do it. Adding an additional protection level
parameter to lmkdir, at this time, was considered to be too painful.

- 21 -

The following routines comprise the LibUnix layer

lchange

To change fields of a directory header. In olden times when LINCS was in full
flower and the earth was indeed a beautiful place the lchange function was
used to change any and all of the directory header fields. In these harsh and
misbegotten times the only fields that remain to be changed are the
ExpirationTime and the ProtectionLevel. And time advances ever forward.

int
lchange (DirCap, Account, Label, Data, UID, GID)

Capability *DirCap;
Capability *Account;
int Label;
int *Data;
int UID;
int GID;

l cr t

To create a directory and return its capability.

int
lcrt (Addr, ProtectionLevel, Account, UID, GID, Perms, DirCap)

NetAddress *Addr;
unsigned ProtectionLevel;
Capability *Account;
int UID;
int GID;
int Perms;
Capability *DirCap;

ldelete

To delete an entry specified by name from a directory.

int
ldelete (DirCap, Name, Account, UID, GID)

Capability *DirCap;
char *Name;
Capability *Account;
int UID;
int GID;

ldestroy

To destroy a block from the Name Server database file. Notice that “destroy” is
a relative term—the block is being destroyed from the Name Server’s point of
view, but is only being deleted from Cachelib’s point of view.

int
ldestroy (Id)

unsigned Id;

- 22 -

lfetch

To fetch the capability specified by name from a directory.

int
lfetch (DirCap, Name, Account, UID, GID, ReturnedCap)

Capability *DirCap;
char *Name;
Capability *Account;
int UID;
int GID;
Capability *ReturnedCap;

lgetattr

To return the attributes of a directory through a UNIX stat structure.

int
lgetattr (DirCap, StatBuf, Account, UID, GID)

Capability *DirCap;
struct stat *StatBuf;
Capability *Account;
int UID;
int GID;

lgetnsparams

To get (fetch) the Name Server global parameters.

int
lgetnsparams (SysAdmin, UID, GID)

NSSysAdminStruct *SysAdmin;
int UID;
int GID;

lgetstats

To get the statistics kept by the Name Server.

int
lgetstats (StatRec, UID, GID)

NSCompleteStatStruct *StatRec;
int UID;
int GID;

lgettrash

To get the expiration time of a ".trash" directory. Since lgetattr uses the UNIX
stat structure to return the attributes and it has no field that maps to the
ExpirationTime, a specialized function is needed.

int
lgettrash (DirCap, Account, UID, GID, ExpirationTime)

Capability *DirCap;
Capability *Account;

- 23 -

int UID;
int GID;
int *ExpirationTime;

linsert

To insert a capability into a directory with an entry name of Name.

int
linsert (DirCap, CapToInsert, Name, Account, UID, GID)

Capability *DirCap;
Capability *CapToInsert;
char *Name;
Capability *Account;
int UID;
int GID;

linsertnolink

To insert a capability into a directory with an entry name of Name.
linsertnolink differs from linsert in that the link count of the item
being inserted is not incremented. It is assumed the caller has already taken care
of the link count. This routine was written to satisfy an efficiency requirement
of saving an RPC message when newly created files are inserted into a
directory.

int
linsertnolink (DirCap, CapToInsert, Name, Account, UID, GID)

Capability *DirCap;
Capability *CapToInsert;
char *Name;
Capability *Account;
int UID;
int GID;

lmakedir

To create a directory called Name in the directory specified by DirCap. The
protection level is passed through the Account capability. See the discussion at
the top of this section.

int
lmakedir (DirCap, Name, Perms, Account, UID, GID)

Capability *DirCap;
char *Name;
int Perms;
Capability *Account;
int UID;
int GID;

lmvdir to

To move an entry named OldName from directory OldDirCap to new directory
NewDirCap with the name NewName.

- 24 -

int
lmvdirto (OldName, NewName, OldDirCap, NewDirCap, Account,
 UID, GID)

char *OldName;
char *NewName;
Capability *OldDirCap;
Capability *NewDirCap;
Capability *Account;
int UID;
int GID;

lquiesce

To “quiesce” the Name Server. That is, to have the Name Server flush any
modified objects from the cache and enter ReadOnly state (where directories
may be read, but not written). This means that the TimeLastAccessed field in
the Directory Header will not be updated.

int
lquiesce (UID, GID)

int UID;
int GID;

l rddir

To read the specified number of entries from a directory and return the entry
names, capabilities, and associated cookie values. The strategy in this routine is
to read the desired stuff from the directory using an “NS” routine and an
efficient Name Server data structure. The data is then copied into the traditional
NFS specified format.

int
lrddir (DirCap, StartIndex, Count, Names, Caps, Cookies,
 Account, UID, GID)

Capability *DirCap;
int *StartIndex;
int *Count;
char *Names[];
Capability Caps[];
char *Cookies[];
Capability *Account;
int UID;
int GID;

lrdlink

To return the contents of a symbolic link.

int
lrdlink (SymCap, Account, UID, GID, Contents)

Capability *SymCap;
Capability *Account;
int UID;
int GID;
char *Contents;

- 25 -

lrenameto

To rename an entry in a directory, changing the entry's name from OldName to
NewName.

int
lrenameto (OldName, NewName, DirCap, Account, UID, GID)

char *OldName;
char *NewName;
Capability *DirCap;
Capability *Account;
int UID;
int GID;

lreplace

To replace the capability in a directory entry specified by Name with a new
capability.

int
lreplace (DirCap, ReplacingCap, Name, Account, UID, GID)

Capability *DirCap;
Capability *ReplacingCap;
char *Name;
Capability *Account;
int UID;
int GID;

lrestart

To change the Name Server’s ReadWrite mode to Write mode after the Name
Server has been “quiesced.” lrestart re-starts normal operation.

int
lrestart (UID, GID)

int UID;
int GID;

lsetattr

To set whatever attributes the caller wishes to have set in the directory header.
There is an interface change that takes place here because the caller supplies
their attributes in a UNIX stat structure and lsetattr puts these attributes
into an AttributesStruct for presentation to the Name Server.

int
lsetattr (DirCap, StatBuf, Account, UID, GID)

Capability *DirCap;
struct stat *StatBuf;
Capability *Account;
int UID;
int GID;

- 26 -

lsetnsparams

To set one or more of the Name Server global parameters.

int
lsetnsparams (SysAdminRec, UID, GID)

NSSysAdminStruct *SysAdminRec;
int UID;
int GID;

lsettrash

To set the expiration time of a ".trash" directory. Once again we find ourselves
implementing something for no other reason than to maintain compatibility with
the mistaken past. Why not simply use the lchange function since one of its
major purposes and reasons of existence is to change the expiration time? Why
not indeed.

int
lsettrash (DirCap, Account, UID, GID, ExpirationTime)

Capability *DirCap;
Capability *Account;
int UID;
int GID;
int ExpirationTime;

lsymlink

To create a symbolic link with the specified contents in a directory with an entry
name specified by Name.

int
lsymlink (DirCap, Name, Account, UID, GID, Permissions,
 Contents)

Capability *DirCap;
char *Name;
Capability *Account;
int UID;
int GID;
int Permissions;
char *Contents;

3.3 Name Server Interface Layer

This layer contains all of the procedures that make up the “natural” interface to the
Name Server. These are the procedures that perform the individual Name Server
functions. There is, in fact, a Name Server Interface procedure for each Name
Server function. For example, the procedure NSMakeDir performs the function
that makes a directory. In a perfect world the Name Server Interface procedures
would replace the LibUnix layer. However the world is sometimes imperfect and,
because the LibUnix interface procedures were here first, they remain.

The following routines comprise the Name Server Interface layer:

- 27 -

NSCreate
NSDelete
NSFetch
NSGetAttribs
NSInsert
NSMakeDir
NSMakeSymLnk
NSMoveDir
NSReadDir
NSReadSymLnk
NSSetAttribs
NSSysAdmin

3.3 Block Manipulation Layer

The Block Manipulation software layer contains all of the procedures that perform
the utilitarian functions performed by the Name Server. There are procedures that
set bits in bit arrays, that add name-capability pairs to directories, that remove
name-capability pairs from directories, that list the contents of directories, etc.

Library package

There is a small collection of procedures that are not specific to the Name
Server, and in fact have a somewhat general application. Some of these
procedures are called by other processes such as NSDE and Bonnie. These
procedures have been collected in a file named Library.c (it seems as though
they should be in a library somewhere). The names of these “library” routines
are:

ConvertTime
DayOfWeek
GetSymbol
IsDST

GetName package

The two procedures GetName and GetSymName are found in the file
GetName.c. GetName is used to extract long (more than 16 characters)
names from a directory Entry and GetSymName is used to extract the symbolic
link data from the Name field of a SymbolicLink.

ListDir calls GetName whenever it needs to return an Indirect Entry name.
GetName scans through all of the (needed) NameBlocks totaling up the length
of the Indirect name. Once the total length of the name has been determined
heap space is acquired and all of the various pieces of the name are copied into
this space making the name one contiguous string. GetName then returns a
pointer to this string.

GetSymName is called by NSGetSymLink to read SymbolicLink data.

FindEntry package

The Name Server often has occasion to find an entry given its name. Such
occasions arise when inserting and deleting entries into and from directories.

- 28 -

To simplify and isolate the somewhat difficult task of finding an Entry, the
procedure FindEntry is provided. FindEntry and all of its associated
parts are found in the file FindEntry.c. FindEntry is supplied a pointer
to a BlockHead and a Name to find. The search begins in the BlockHead and,
if necessary, continues through any attached EntryBlocks until the name is
found or all the entries in the directory have been examined. The name of the
entry to find can be arbitrarily long. FindEntry will fetch whatever
NameBlocks are needed to perform its search. If a match to a name is found
FindEntry returns the associated capability and returns a boolean value of
“true”.

AddEntry package

All of the procedures needed to add an Entry (a name-capability pair) to a
directory are isolated in the source file AddEntry.c. AddEntry is given a
Name and a capability and the directory to add them to. AddEntry finds the
first available entry slot and inserts the entry there. If the name contains 16
characters or less a DirectEntry is made. If the name contains more than 16
characters an IndirectEntry is made. If an additional EntryBlock is needed,
AddEntry obtains one. If additional NameBlocks are required, AddEntry
obtains them. AddEntry updates the InUse, Indirect, and NameSpaceUsage
bits as appropriate.

RemoveEntry package

All of the procedures needed to remove an Entry (a name-capability pair) are
isolated in the source file RemoveEntry.c. RemoveEntry is given a Name
and the directory to remove the entry from. RemoveEntry locates the name
(if it exists) and removes the Name and the corresponding capability from the
directory. If the name is 16 characters or less (a DirectEntry) the DirectEntry is
removed by simply zeroing the 96 bytes. If, however, the name contains more
than 16 characters (an IndirectEntry) the 96 bytes are zeroed and the characters
comprising the remainder of this name are removed from the NameBlocks.

If the removal of characters from a NameBlock causes a NameBlock to become
empty, RemoveEntry scavenges the NameBlock. If the removal of an Entry
causes an EntryBlock to become empty, RemoveEntry scavenges the
EntryBlock if it is the last EntryBlock in a chain. The reason for this is that
scavenging free EntryBlocks in the middle of a chain would change the
“Cookie” index of the subsequent Entries. However, if there are one or more
empty EntryBlocks chained together and the last EntryBlock contains a single
Entry that is being removed, then RemoveEntry will scavenge all of the
empty EntryBlocks.

Listing a directory.

Listing the contents of a directory is accomplished by calling ListDir which is
found in file ListDir.c. The caller supplies the directory to be listed, where to
start listing in the directory, and a count of how many Entries are to be listed.
The Entries are returned in a linked list of structures called a DirIdListStuct.

- 29 -

Algorithm for detecting potential loops

The directory structure provided by the Name Server is a tree structured
directory. A tree structure by definition cannot contain "loops". Because
clients can insert directory capabilities and can move directories the Name
Server needed some method of insuring that inserts and moves would not create
loops in the directory structure. There is a procedure named CheckForLoop
in file CheckForLoop.c that performs this check. The input to
CheckForLoop is the capability to the directory that is being inserted into and
the capability to the directory that is to be inserted.

The algorithm for checking for a loop is straight forward: Starting with the
directory that is being inserted (or moved) into, the ".." (dot-dot) directory is
examined. If the ".." capability is equal to the capability that is to be inserted,
there is a loop. Following the path created by the ".." directories,
CheckForLoop continues testing for a match against the capability that is to
be inserted. If the capability to be inserted matches any of the ".." capabilities,
there is a loop. CheckForLoop finishes its search when the ".." directory
capability equals the “.” directory capability, because this only occurs in the top
level directory (the RootOfRoots).

3.4 Cachelib Layer

Cachelib is a collection of software that allows the Name Server to manage its data
base. Cachelib maintains the data as an array of fixed sized elements called objects.
The objects are stored in a file called the store file. A store file may consist of
several physical files, but cachelib treats the files as a single logical file. Each
object in the store file has a unique cachelib identifier, which is a zero origin index
into the object array.

In addition, Cachelib provides the Name Server with:

• an in-memory cache
• access synchronization in a multi-tasking environment
• data integrity through the use of primary and backup files
• a transaction mechanism for ensuring consistency of multiple block updates

3.4.1 In-memory Cache

An in-memory cache is obtained from heap space by occinit. The size of the
cache (number of objects that can be held) is a site-configurable parameter that
can be changed in the configuration file and picked up next time the Name
Server is initialized. The cache is implemented as an array of elements called
slots. Each slot contains an object's data (read from the store file) and some
state information about the object, such as the cachelib id of the object and
whether the slot is dirty or not.

When the Name Server references an object, the Cachelib layer determines if the
object is in the cache or not. If the object is not in the cache, the Least Recently
Used (LRU) cache slot is found and the object is read from the store file into
that slot. Cachelib keeps a linked list of LRU slots where the slots at the
beginning of the list are chosen first when searching for an available slot. All

- 30 -

modified objects are marked as dirty and are written back to the store file before
being removed from the cache.

3.4.2 Access Synchronization

Cachelib provides a flexible mechanism for synchronizing access to objects in a
multitasking environment. It provides this synchronization through two user
level procedures that manipulate internal semaphores. Name Server tasks
obtain access to objects by calling oclock and specifying the Id of the desired
object. Upon receiving the oclock request Cachelib determines whether or
not the object is already in the memory cache. If the object is not in the memory
cache Cachelib finds an available slot and reads it in. If the object is in the
cache Cachelib simply P’s the slot semaphore. Access to the slot is strictly
first-come first-served.

A second parameter to oclock determines the type of access: shared or
exclusive. Tasks requesting a shared lock share access to a slot with other
tasks. Tasks having a shared lock should not write to or alter the data in the
slot. (There is no way Cachelib can enforce this requirement. This is strictly a
coding discipline.) Tasks requesting exclusive access to a slot wait until all
shared locks have been given up and then exclusive access to the slot is granted.
Once an exclusive lock is granted, any other requests (shared or exclusive) for
the slot must wait until the exclusive lock is released. The holder of an
exclusive lock is free to modify the object.

Access to slots (objects) is released through the ocunlock procedure. One of
the parameters to ocunlock is the Id of the block that is to be released. Upon
receiving an ocunlock request Cachelib V’s the indicated slot semaphore
thereby making the slot available to another task.

Sometimes, when examining Name Server core files it is helpful to know the
last few events that occurred regarding slot access. For this reason, a pointer to
a history buffer exists in the cache data structure. The history buffer contains a
list of records defined in cache.h as:

typedef struct
{

unsigned TaskId;
unsigned IdRequested;
unsigned IdFromSlot;
unsigned NextIdFromSlot;
unsigned SlotAddress;
unsigned State;
unsigned TheTime;

} HistStruct;

Where State an integer value defined in cache.h by:

typedef enum
{

STATE_ID_PRESENT;
STATE_ID_BEING_WRITTEN;
STATE_ID_BEING_READ;
STATE_ID_BEING_FREED;

- 31 -

STATE_SLOT_CLEAN;
STATE_SLOT_DIRTY;
STATE_DONE;
STATE_RETRY;
STATE_ERROR;

} States;

In the cachelib routine, slot.c, a task transitions through some of these states
before obtaining access to the desired object.

3.4.3 Data Integrity

Cachelib provides data integrity through the use of two devices (or files): a
primary and a backup device. Cachelib is very insistent on the following point:
there must be a distinct primary and backup device. In order for the
transaction mechanism to operate correctly there must be two distinct devices.

The data on the backup device should be an exact copy of the data on the
primary device. The only time the data ever differs is following a hard crash
that has left the database in an inconsistent state. The differences should be
immediately resolved after the Name Server initializes. Differences that remain
following Name Server initialization are matters of grave concern and should be
immediately examined and rectified by the system administrator.

All device reads are from the primary device unless an I/O failure occurs in
which case the backup device will be read. If Cachelib is unable to read from
either device it halts and demands that the disks be repaired. All writes are to
both the primary and the backup device. The transaction mechanism dictates
that all objects in a transaction are first written to the primary device and then
these same objects are written to the backup device.

3.4.4 Cachelib Transactions

Cachelib offers data consistency by allowing multiple blocks updates to occur
as a single atomic transaction. At the Cachelib level there is no way to know
how or if objects are related. Cachelib simply moves single (1024-byte blocks)
objects between the memory cache and the store file(s). It is the responsibility
of the higher level software to bind objects into logical groupings. The Name
Server is the higher level software that makes these groupings.

Whenever directory entries are added or deleted it can be the case that two or
more blocks are altered (created, deleted, updated). For example, if an Entry
with a very long name is added, one or more NameBlocks may be obtained and
an EntryBlock may be updated or obtained. Likewise, if an Entry is deleted,
several NameBlocks and/or EntryBlocks may be altered. It is vitally important
that all of these altered blocks are updated as a single transaction and if a failure
of any sort occurs, nothing should be updated. If any portion of the update is
interrupted it should look to the user as if the command never reached the Name
Server.

The Name Server groups blocks together with a linked list data structure called
a TransEntryStruct. As blocks are updated and changed they are added to the
linked list of TransEntryStructs. When it is time to write these blocks to disk
the Name Server calls the Cachelib procedure WriteSlots passing the list of

- 32 -

TransEntryStructs. WriteSlots uses a “stable store” algorithm to insure the
blocks are written to the store files as an atomic transaction.

The stable store algorithm operates by writing its “intentions” to a file called a
“Transaction Log File”. These intentions take the form of “all the cachelib Ids
that are to be written as a group.” For example, if WriteSlots is given the Ids of
four blocks that are to be written from the memory cache to the store files, it
first writes these four Ids into the Transaction Log File. The format of a
Transaction Log File is shown in Figure 14. After the Transaction Log File is
safely written, WriteSlots then writes the individual blocks to their respective
slots. First it writes to all the objects in the primary file and then to these same
objects in the backup store file. This simple algorithm insures that these blocks
are written as a single transaction because if a failure of any sort (Kernel panic,
hardware fault, etc.) occurs, the next time the Name Server is initialized, the
Cachelib initialization software examines the Transaction Log File and corrects
any inconsistencies that might have occurred. The information in the
Transaction Log File is sufficient to resolve any inconsistencies that may have
occurred at any point in the transaction.

There is an interesting problem that may occur. What happens if the system
(repeatedly) crashes during Cachelib initialization? The stable store algorithm
must recognize this situation and survive it. To solve this potential problem a
second file called the “Transaction Journal File” is used. This file is used only
during initialization to record the progress of any restore efforts. Using the
Transaction Log File and the Transaction Journal File, Cachelib can insure
consistent multi-block updates.

- 33 -

Transaction Log File

'TRAN'

Timestamp

Num Entries

4

 4

8

4080

Space for 1020 Ids. Each
entry is a Cachelib Id that is
a part of this transaction.

Figure 14. The Transaction Log File is composed of 4 fields: a consistency
string “TRAN”, the current time, the NumEntries (the number of block Ids to
be found in the Id array), the Ids of the blocks to be written during this
transaction.

In include file cache.h the Transaction Log File is defined as:

typedef struct TransJournalStruct
{

char ConsistencyString[4];
int NumEntries;
int64 TimeStamp;
int Entry[MAX_TRANS_ENTRIES];

} TransJournalStruct;

- 34 -

3.5 Block I/O Layer

The Block I/O layer is used by Cachelib to perform its disk I/O. This layer is
necessary to perform “device” (also called “partition”) I/O because I/O to devices
can only be done in 4096 byte blocks and the I/O must begin and end on 4096 byte
boundaries. However, Cachelib wants to read and write objects that are less than
this. Each Name Server block is 1024 bytes in length. The Block I/O layer
provides a solution to this problem by providing a cache of several 4096 byte
buffers. When Cachelib reads one of its (small) objects, the Block I/O layer finds
an empty (large) buffer from among its pool of buffers and reads in the 4096 bytes
that contain the object. The object is then copied into the requester's buffer. If an
empty buffer cannot be found, the Block I/O layer obtains a new one.

When the files used by the Block I/O routines to read and write the disk are opened
an “option" that insures that the data will not pass through any UNIX buffers is
used. It is vitally important to the correct operation of the Name Server that all
writes to a device are exactly that, a write to a device, not to some system buffer.

Overlapping, or asynchronous I/O, is accomplished through the tasking
mechanism. While a task is waiting for its I/O to complete, another task may run
and “launch” its I/O. As each I/O completes the corresponding task is awakened.

3.6 SMILE

SMILE (for System/Machine-Independent Local Environment) is a portable
tasking package developed at LLNL. The Name Server relies on this software layer
for its multi-tasking environment. For more information on SMILE see the SMILE
documentation.

4.0 Required Files
There are several files that must be present for the Name Server to operate correctly. Some
of these files are configuration files which contain run-time configuration parameters, and
others are data files used by the Name Server. The path names to all of these files are
obtained through calls to ResolvePath.

Configuration files (read at initialization):

• Name Server configuration file.
• file containing the RootOfRoots capability.
• password file.

Data files used by the Name Server:

• primary database file.
• backup database file.
• transaction log file.
• transaction journal file.
• Name Server log file.
• Cachelib log file.

- 35 -

5.0 Initialization
When the Name Server “comes up” (initializes) it goes through a number of steps:

• It initializes two of its log files: NSLog and NSCacheLog. The Name Server writes
the current time and the values of all the initialization parameters into the NSLog
file. Cachelib writes to the NSCacheLog file.

• It discovers its own address by a call to ResolveNetAddr.

• It reads a number of global parameters from the configuration file. These
parameters tell the Name Server the size of its memory cache, the number of store
files, the types (file or device) of the store files, and whether or not to do
checksumming.

• It initializes (zeros) its statistics records.

• It initializes the storefiles with a call to the Cachelib routine osfinit. During this
step all repairs (if needed) to the store files are performed. If there was a crash that
left the store file(s) in an inconsistent state Cachelib, using the transaction
mechanisms, will correct the inconsistencies.

• It builds and initializes its memory cache with a call to the Cachelib routine
occinit.

• It builds the TrashHash table used by Shiva.

• It forks the Shiva task.

• It forks several tasks that service client requests.

6.0 Core files
If the Name Server detects an internal inconsistency it will “crash”. A crash is always done
in two steps: it writes a message to the NSLog and then calls the CRASH macro. The
CRASH macro calls the Crash procedure passing it the name of the source file containing
the currently executing procedure and the current line number. Crash writes this
information into NSLog. Crash then looks for an existing core file in the current working
directory and if one is found it changes its name to

core-mmdd-hhmn

where

mm the month
dd the day
hh the hour
mn the minute

Crash then calls abort and the Name Server goes to visit its ancestors.

- 36 -

7.0 Orphans
It is possible, if a crash occurs at precisely the wrong time, for the Name Server to create
an orphaned block. An orphaned block is a block that is not on the Cachelib free list, and
is not pointed to by any other (Name Server) blocks. Orphaned blocks do not cause any
trouble for the Name Server and do not in any way cause the database to be inconsistent.
In fact, the only problem caused by orphaned blocks is that the space they occupy in the
database could be used for better purposes.

An orphaned block can occur in the following 2 ways:

Suppose the last Entry from an EntryBlock is being deleted and that this EntryBlock is
the last (or only) EntryBlock in a chain. Recall that whenever the last Entry is removed
from the last EntryBlock the block is scavenged. If an inopportune crash occurs during
this “update” an orphaned block could result.

Suppose that a new block is obtained because of a lmkdir request or for use as a
NameBlock or an EntryBlock. If an inopportune crash occurs during this operation an
orphaned block could result.

7.1 How?

To preserve the integrity of the database, deletes are processed as follows:

• all blocks (excluding the “last block”) that have been modified are written as a
transaction to the database.

• the “last block” is deleted.

If a crash occurred between these two steps an orphaned block (the “last block” in this
example) can occur. Note that orphaned blocks can also occur when attempting to
delete the last NameBlock in a chain or when deleting a directory.

To preserve the integrity of the database, new blocks are obtained as follows:

• the cachelib routine osgeten is called. osgeten gets the next free block in the
store file and removes it from the cachelib free list.

• all blocks (those that point to the new block) that have been modified are written
as a transaction to the database.

If a crash occurs between these two steps an orphaned block can occur.

7.2 Why?

This problem has to do with history, cost, and time. When transaction processing was
put into Cachelib we immediately knew there was going to be a problem with “deletes”
and "creates". The transaction mechanism was designed so that the upper level (above
Cachelib) software could control the blocks that are included in a transaction.
Obtaining and deleting cachelib blocks is a problem because it operates at a level too
low to be included in the transaction mechanism and it involved the update of two
blocks (and the store file header). Cachelib already had a correct and sophisticated
algorithm for detecting and correcting partially allocated blocks. Rather than take the

- 37 -

time to redesign the way cachelib obtains and deletes blocks and integrate the new
method into the transaction mechanism, we decided to live with the problem and accept
the consequences. Since the consequences are that a handful of orphaned blocks may
be created each year , who cares? This is a problem that can be lived with for centuries
before ever being noticed.

However, even though the problem appears to be trivial, a solution has been provided.
NSDE has a command that searches a Name Server database for orphaned blocks. If
any are found they are reported. After insuring that the reported blocks are indeed
orphans, Bonnie can be used to zap the blocks (with the dst command). It is
strongly recommended that the “orphan search” done by NSDE is performed on a copy
of the (non-active) database. It should never be performed on the (live) database that
the Name Server is currently connected to because the real database can be "caught" in
an inconsistent state when new blocks are being added to or removed from directory
chains. It is further recommended that “orphan searches” (and other consistency
checks) be performed on a routine (monthly) basis.

